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Abstract

We prove an explicit formula for the polynomial part of a restricted partition function,
also known as the first Sylvester wave. This is achieved by way of some identities for
higher-order Bernoulli polynomials, one of which is analogous to Raabe’s well-known
multiplication formula for the ordinary Bernoulli polynomials. As a consequence of our
main result we obtain an asymptotic expression of the first Sylvester wave as the
coefficients of the restricted partition grow arbitrarily large.
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1 Background
An interesting topic in the theory of partitions is that of restricted partitions, where the
following question has been studied quite extensively: given a vector d := (d1, d2, . . . , dm)
of positive integers, let W (s,d) be the number of partitions of the integer s with parts in
d, i.e.,W (s,d) is the number of solutions of

d1x1 + d2x2 + · · · + dmxm = s (1)

in nonnegative integers x1, . . . , xm. For a history of this problem, see [5, p. 119ff.].
A standardmethod of dealing with questions of this type goes back to Euler and involves

a generating function, which in our case is

F (t,d) :=
m∏

j=1

1
1 − tdj

=
∞∑

s=0
W (s,d)ts. (2)

Amajor advancewasmadeby Sylvester [22,23]whowrote the restricted partition function
W (s,d) as a sum of “waves”,

W (s,d) =
∑

j≥1
Wj(s,d), (3)

where the sum is taken over all distinct divisors j of the components of d. Sylvester [23]
showed that for each such j,Wj(s,d) is the coefficient of t−1, i.e., the residue, of the function

Fj(s, t) =
∑

0≤ν<j
gcd(ν,j)=1

ρ−νs
j est

(
1 − ρ

νd1
j e−d1t

)
. . .

(
1 − ρ

νdm
j e−dmt

) , (4)
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where ρj is a primitive jth root of unity, for instance ρj = e2π i/j , and where we set
gcd(0, 0) = 1 by convention. In other words, the sum in (4) is taken over all primitive jth
roots of unity ρν

j . These Sylvester waves have been studied in great detail in recent years;
see, e.g., [10,19,20]; see also [7,8,14] for a broader perspective, and [21] for computations
related to restricted partitions.
For j = 1, the right-hand side of (4) is recognizable as being very close to the generating

function of a higher-order Bernoulli polynomial. This fact was used by Rubinstein and Fel
[20] to write W1(s,d) in a very compact form in terms of a single higher-order Bernoulli
polynomial [see (33) below]. A version of this result, given in two different forms, was
earlier obtained by Beck, Gessel and Komatsu [3], as mentioned in [20]. Similarly, for
j = 2 we have ρj = −1, and the right-hand side of (4) will typically lead to a convolution
sum of higher-order Bernoulli and higher-order Euler polynomials; this was also done in
[20]. Furthermore, Rubinstein and Fel extended this approach and expressedWj(s,d) for
arbitrary j in terms of generalized Eulerian polynomials of higher order, in addition to the
expected higher-order Bernoulli polynomials.
In a subsequent paper, Rubinstein [19] showed that all the Sylvester wavesWj(s,d) can

be written as linear combinations of the first wave (j = 1) alone, with modified integers s
and vectors d [see (47) below]. This makes it worthwhile to give further consideration to
W1(s,d), which is the purpose of the present paper.Ourmain result is the following explicit
formula for W1(s,d); its significance lies in the fact that it does not contain Bernoulli
numbers or polynomials.

Theorem 1.1 Let d := (d1, d2, . . . , dm) be given, and denote d := d1 . . . dm and d̃i :=
d/di, i = 1, . . . , m. Then

W1(s,d) = 1
(m − 1)!dm

∑

0≤�1≤d̃1−1
...

0≤�m≤d̃m−1

m−1∏

j=1
(s + jd − �1d1 − · · · − �mdm) . (5)

For a more compact form of this identity, see Sect. 5.
Towards proving this theorem, we derive (or re-derive) some identities which are anal-

ogous to classical results in the theory of Bernoulli polynomials and their higher-order
analogues. Our main tool is a symbolic notation which, in spite of some similarities, is dif-
ferent from the classical umbral calculus. This will be introduced in Sect. 2, and we apply
it in Sect. 3 to prove the auxiliary results as well as Theorem 1.1. In Sect. 4 we present
some examples and consequences of Theorem 1.1, including an asymptotic expression.
We finish this paper with some additional remarks in Sect. 5.

2 Symbolic notation
Although the results in Sect. 3 could also be proved (and in some cases have been proved)
by other methods, especially using generating functions, the symbolic notation described
below makes the discovery and proof of some identities considerably easier. While there
are similarities to the classical umbral calculus (see, e.g., [11] or [18]), our notation is
more specific to Bernoulli numbers and polynomials, and is related to probability theory.
The following brief exposition is partly taken from [6]; we repeat it here for the sake of
completeness.
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The basis for our notation are two symbols, B and U , which annihilate each other, as we
shall see. First, we define the Bernoulli symbol B by

Bn = Bn (n = 0, 1, . . .), (6)

where Bn is the nth Bernoulli number. So, for instance, we can be rewrite the usual
definition for the Bernoulli polynomial Bn(x),

Bn(x) =
n∑

j=0

(
n
j

)
Bjxn−j as Bn(x) = (x + B)n. (7)

Furthermore, with the usual (generating function) definition of the Bernoulli numbers we
have

exp (Bz) =
∞∑

n=0
Bn zn

n!
=

∞∑

n=0
Bn

zn

n!
= z

ez − 1
. (8)

We obtain a useful identity from this if we note that

exp((B + 1)z) = z
ez − 1

· ez = −z
e−z − 1

= exp(−Bz),

and thus

B + 1 = −B. (9)

We also require several independent Bernoulli symbols B1, . . . ,Bk . Independence means
that if we have any two Bernoulli symbols, say B1 and B2, then

Bk
1B�

2 = BkB�. (10)

Second, the uniform symbol U is defined by

f (x + U ) =
∫ 1

0
f (x + u)du. (11)

Here and elsewherewe assume that f is an arbitrary polynomial. From (11)we immediately
obtain, in analogy to (6),

Un = 1
n + 1

(n = 0, 1, . . .), (12)

and using this, we get

exp (Uz) =
∞∑

n=0
Un zn

n!
= ez − 1

z
. (13)

From (8) and (13) we now deduce

exp (z (B + U )) =
∞∑

n=0
(B + U )n zn

n!
= 1,
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which means that B and U annihilate each other, i.e., (B + U )n = 0 for all n �= 0, in the
sense that

f (x + B + U ) = f (x), (14)

for an arbitrary polynomial f .
For an integerm ≥ 1 and a collection of not necessarily distinct real numbers {a1, . . . , am}
we now introduce the discrete uniform symbolU{a1 ,...,am} by way of the generating function

exp
(
zU{a1 ,...,am}

) = ea1z + · · · + eamz

m
, (15)

or equivalently by

f
(
x + U{a1 ,...,am}

) = 1
m

(
f (x + a1) + · · · + f (x + am)

)
, (16)

for an arbitrary polynomial f , which can be seen as a discrete analogue of (11). From the
definition (15) we immediately obtain the identity

cU{a1 ,...,am} = U{ca1 ,...,cam} (c ∈ R). (17)

Furthermore, given two sets a = {a1, . . . , am} and b = {b1, . . . , bn}, we have

exp(z(Ua + Ub)) = 1
m

( m∑

i=1
eaiz

)
1
n

⎛

⎝
n∑

j=1
ebjz

⎞

⎠ = 1
mn

∑

1≤i≤m
1≤j≤n

e(ai+bj)z

= exp(zU{a1+b1 ,...,am+bn}),

and thus

U{a1 ,...,am} + U{b1 ,...,bn} = U{a1+b1 ,...,am+bn}, (18)

with an obvious extension (by induction) to an arbitrary number of summands.
Considering the special case {0, 1, . . . , m − 1}, we multiply (15) and (13) and get

exp
(
z(U + U{0,1,...,m−1})

) = ez − 1
z

· 1 + ez + · · · + e(m−1)z

m
= emz − 1

mz
,

and thus, using again (13),

mU = U + U{0,1,...,m−1}. (19)

But by (14) we have B + U = 0 and m(B + U ) = 0, so that by (19) we have U + mB +
U{0,1,...,m−1} = 0. Since B + U = 0, we deduce

B = mB + U{0,1,...,m−1}. (20)

Finally, for an integer k ≥ 1 we define the higher-order Bernoulli symbol B(k) by

B(k) = B1 + · · · + Bk , (21)

where B1, . . . ,Bk are independent Bernoulli symbols; see (10).
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3 Higher-order Bernoulli polynomials and proof of Theorem 1.1
One of the most remarkable and useful identities for the classical Bernoulli polynomials
is Raabe’s formula [16] of 1851,

Bn(mx) = mn−1
m−1∑

j=0
Bn

(
x + j

m

)
, (22)

valid for all integersm ≥ 1 and n ≥ 0; see also [15, (24.4.18)].
For an integer k ≥ 1, the Bernoulli polynomial of order k is defined by the generating

function
(

z
ez − 1

)k
exz =

∞∑

n=0
B(k)
n (x)

zn

n!
. (23)

The following identity can be seen as a higher-order analogue of Raabe’s formula.

Theorem 3.1 Let n,m, and d1, . . . , dm be positive integers, and set d := d1 . . . dm. Then

(x + d1B1 + . . . + dmBm)n = dn−m+1
∑

�

B(m)
n ( xd + �), (24)

where the sum is taken over all values

� = 1
d
(�1d1 + · · · + �mdm), 0 ≤ �i ≤ d

di
− 1, i = 1, . . . , m.

Proof Let d̃i := d/di for 1 ≤ i ≤ m. Then using (20) with B replaced by Bi and m by d̃i,
we get

m∑

i=1
diBi =

m∑

i=1
did̃iBi +

m∑

i=1
diU{0,1,...,̃di−1} = dB(m) +

m∑

i=1
diU{0,1,...,̃di−1},

where we have used (21) and the fact that, by definition, did̃i = d for all i = 1, . . . , m.
Thus,

(x + d1B1 + · · · + dmBm)n = dn
(
x
d

+ B(m) + 1
d

m∑

i=1
diU{0,1,...,̃di−1}

)n

. (25)

Now, using (17), followed by an iterated version of (18), we get

1
d

m∑

i=1
diU{0,1,...,̃di−1} =

m∑

i=1

1
d̃i
U{0,1,...,̃di−1} =

m∑

i=1
U

{0, 1
d̃i

,..., d̃i−1
d̃i

}
= U{�},

where {�} indicates the collection of all values

� = �1

d̃1
+ · · · + �m

d̃m
0 ≤ �i ≤ d̃i − 1, i = 1, . . . , m.

Thus we have with (25),

(x + d1B1 + · · · + dmBm)n = dn
( x
d

+ B(m) + U{�}
)n

. (26)

Finally we note that the number of (not necessarily distinct) elements in {�} is

d̃1 . . . d̃m = dm

d1 . . . dm
= dm−1. (27)
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Therefore by (16), in this case with dm−1 in place ofm, (26) leads to (24), and we are done.
��

Wenote that this result is notnew. In fact, it is a special caseof identity (60) in the classical
book of Nörlund [13, p. 135]. However, the method of proof in [13] is very different from
ours and relies on the theory of finite differences. On the other hand, it should also be
mentioned that the symbolic notation involving the Bernoulli symbol, more or less as used
on the left-hand side of (24), can also be found in [13], on p. 135 and elsewhere.
Among the numerous known results about higher-order Bernoulli polynomials which

can be found, for instance, in [13, Ch. 6], the identity

B(m)
m−1(x) = (x − 1)(x − 2) . . . (x − m + 1) (m ≥ 2), (28)

with B(1)
0 (x) = B0(x) = 1, is of particular importance here; for a proof see, e.g., [13, p. 147].

There is a more general concept of a higher-order Bernoulli polynomial, which allowed
Rubinstein and Fel [20] to express the first Sylvester wave in a very compact form. It can
be defined as follows (see, e.g., [9, p. 39] or [20, p. 333]): For a fixed m ≥ 1 and a vector
of positive integers d = (d1, . . . , dm) we define the polynomials B(m)

n (x|d), n = 0, 1, . . ., by
the generating function

exz
m∏

i=1

diz
ediz − 1

=
∞∑

n=0
B(m)
n (x|d)z

n

n!
, (29)

or symbolically by

B(m)
n (x|d) = (x + d1B1 + · · · + dmBm)n . (30)

Comparing (29) with (23), we see that B(m)
n (x|(1, . . . , 1)) = B(m)

n (x). The polynomials
B(m)
n (x|d), with a different notation and different normalization, can also be found in [2]

and [4, p. 151], where they are called Bernoulli-Barnes polynomials.
From (24) and (28) we can now obtain the following analogue of (28).

Corollary 3.2 Let m ≥ 1 be an integer and d := (d1, . . . , dm) a vector of positive integers,
and denote d := d1 . . . dm and d̃i := d/di for 1 ≤ i ≤ k. Then

B(m)
m−1(x|d) = 1

dm−1

∑

0≤�1≤d̃1−1···
0≤�m≤d̃m−1

m−1∏

j=1
(x − jd + �1d1 + · · · + �mdm) . (31)

Before proving this, we note that in the case d1 = · · · = dm = 1, the multiple sum on
the right of (31) collapses to the single term �1 = · · · = �m = 0, and (31) reduces to (28).

Proof of Corollary 3.2 Using (30) and Theorem 3.1 with n = m − 1, followed by (28), we
get

B(m)
m−1(x|d) =

∑

y
B(m)
m−1(

x
d + y)

=
∑

0≤�1≤d̃1−1
...

0≤�m≤d̃m−1

m−1∏

j=1

(
x
d − j + �1

d̃1
+ · · · + �m

d̃m

)
.

Multiplying each factor in the product on the right by d, we obtain (31). ��



Dilcher and Vignat Res. Number Theory (2017) 3:1 Page 7 of 12

For the proof of Theorem 1.1 we also need the following reflection formula, which can
be found in [13, p. 134]. For the sake of completeness we will provide a proof.

Lemma 3.3 Let m and d1, . . . , dm be positive integers, and let d := (d1, . . . , dm) and
σ := d1 + · · · + dm. Then for all n ≥ 0 we have

B(m)
n (x + σ |d) = (−1)nB(m)

n (−x|d). (32)

Proof Using the definition of σ and then (8), we get

B(m)
n (x + σ |d) = (x + d1(B1 + 1) + · · · + dm(Bm + 1))n

= (x − d1B1 − · · · − dmBm)n

= (−1)n (−x + d1B1 + · · · + dmBm)n ;

this last line is the right-hand side of (32). ��

We are now ready to prove Theorem 1.1. The previously mentioned identity of Rubin-
stein and Fel (Eq. (8) in [20]) for the first Sylvester wave is, in our notation,

W1(s,d) = 1
(m − 1)!d

B(m)
m−1(s + σ |d), (33)

where, as before, d = (d1, . . . , dm), d = d1 . . . dm, and σ = d1 + · · · + dm. (A version of
(33) can also be found in [4, p. 151].) Now we use (32) with n = m − 1, followed by (31).
This immediately gives (5), and the proof is complete.

4 Examples and consequences of Theorem 1.1
We begin this section by explicitly stating some small cases of Theorem 1.1 as examples.
Form = 2 we obtain

W1(s, (d1, d2)) = 1
d1d2

s + d1 + d2
2d1d2

; (34)

this is illustrated by Fig. 1, for d = (3, 5).
Next, form = 3 we have

W1(s, (d1, d2, d3)) = 1
2d1d2d3

s2 + d1 + d2 + d3
2d1d2d3

s

+ 1
12

(
(d1 + d2 + d3)2

d1d2d3
+ 1

d1
+ 1

d2
+ 1

d3

)
, (35)

which is illustrated by Fig. 2, for d = (3, 5, 7).
The evaluations (34) and (35) are not new; they can be found in [12, p. 275], where all

cases up tom = 7 are given explicitly. The polynomials (34) and (35), along with the case
m = 4, can also be found in [4, p. 152]. As specific examples, we state below the first few
cases for d = (1, 2, . . . , m), including the specializations of (34) and (35).

W1(s, (1, 2)) = 1
2
s + 3

4
, (36)

W1(s, (1, 2, 3)) = 1
12

s2 + 1
2
s + 47

12
, (37)
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Fig. 1 W1(s, d) (solid line) and numbers of solutions of (1),i.e.,W (s, d) (dots) for d = (3, 5) and s ≤ 200
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Fig. 2 W1(s, d) (solid line) and numbers of solutions of (1), i.e.,W (s, d) (dots) for d = (3, 5, 7) and s ≤ 100

W1(s, (1, . . . , 4)) = 1
144

s3 + 5
48

s2 + 15
32

s + 175
288

, (38)

W1(s, (1, . . . , 5)) = 1
2880

s4 + 1
96

s3 + 31
288

s2 + 85
192

s + 50651
86400

. (39)

These polynomials also appear in [21, p. 641] as polynomial parts of the identities (2)–(5).
Some historical notes with further references can also be found in [21].
Theorem 1.1 can also be used to determine the two highest coefficients ofW1(s,d); we

state this as a corollary.

Corollary 4.1 For positive integers m ≥ 2 and d1, . . . dm, we let d := (d1, . . . dm), d :=
d1 . . . dm, and σ := d1 + · · · + dm, as before. Then

W1(s,d) = 1
(m − 1)!d

sm−1 + σ

2(m − 2)!d
sm−2 + · · · (40)

The leading coefficient, which has long been known (see, e.g., [3] and references therein),
follows immediately from (5) if we note that by (27) the number of summands in the m-
fold sum is dm−1. The second coefficient follows from a simple expansion of the product
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on the right of (5). We skip the details since both coefficients follow immediately from
the identity (3) in [3].
For the special case d = (1, 2, . . . , m), the identity (40) can be found in [17, Satz 1] and

[24, p. 311].
From the fact that the first Sylvester wave is a polynomial, it is clear that for fixed m

and bounded components of d, W1(s,d) is asymptotically equal to the leading term in
(40), as s gets arbitrarily large. However, it is not immediately clear what happens if the
components of d also grow, along with s. This is addressed in the following consequence
of Theorem 1.1.

Corollary 4.2 Let m ≥ 2 be fixed, and consider the vector d := (d1, . . . , dm) of positive
integers, with d := d1 . . . dm. Let λ > 0 and s ≥ λd, and let d grow arbitrarily large in such
a way that at least two of the components dj, 1 ≤ j ≤ m, are unbounded. Then

W1(s,d) ∼ 1
(m − 1)!d

sm−1, (41)

that is, W1(s,d) has the same asymptotic behaviour as in the case of bounded d.

The proof of this result relies on interpreting the m-fold sum on the right of (5) as a
Riemann sumof a certainmultiple integral.We therefore begin by evaluating this integral.

Lemma 4.3 Let λ ∈ R be a constant and m ≥ 1 an integer. Then

∫

[0,1]m

m−1∏

j=1
(λ + j − x1 − · · · − xm)dx1 . . . dxm = λm−1. (42)

Proof For m = 1 the product is empty and is therefore 1 by convention; the identity is
then trivially true. Form ≥ 2 we use (28) to rewrite the integral as

(−1)m−1
∫

[0,1]m
B(m)
m−1(x1 + · · · + xm − λ)dx1 . . . dxm.

Now by (11) each integration over [0, 1] is equivalent to adding a uniform symbol U , and
since

B(m)
m−1(x1 + · · · + xm − λ) = (−λ + B1 + · · · + Bm)m−1

[see, e.g., (30) with d = (1, . . . , 1)], the desired integral is

(−1)m−1 (−λ + B1 + · · · + Bm + U1 + · · · + Um)m−1 = λm−1,

where we have made repeated (m-fold) use of the cancellation property (14). ��
Proof of Corollary 4.2 Since sm−1 is the highest power in (40), wemay as well take s = λd.
We can then rewrite (5) as

W1(λd,d) = 1
(m − 1)!d

∑

�

m−1∏

j=1

(
λ + j − �1

d̃1
− · · · − �m

d̃m

)
, (43)

where � indicates the summation as detailed in (5). We now denote

xj := �j

d̃j
and �xj = 1

d̃j
= dj

d
, 1 ≤ j ≤ m.
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If only one of the dj , say d1, were unbounded as their product d grows, then �x1 =
1/(d2 . . . dm) would not approach 0 as d grows. However, this cannot happen if at least
two of the dj are unbounded as d grows. If we now multiply the sum on the right of (43)
by

�x1 . . . �xm = d1 . . . dm
dm

= 1
dm−1 ,

we can identify this m-fold sum as a Riemann sum that converges to the integral in (42).
Hence we have, by Lemma 4.3,

W1(λd,d) ∼ dm−1

(m − 1)!d
λm−1 as d → ∞.

Finally, we are done if we replace λ by s/d. ��

5 Additional Remarks
1. If we divide each factor in the product on the right of (5) by d, we see that the resulting
product can be written as a Pochhammer symbol (rising factorial) or as a falling factorial.
But we can also combine it with (m − 1)! in the denominator; using the (generalized)
binomial coefficient

(x
n
) = x(x − 1) . . . (x − n+ 1)/n! we can then rewrite Theorem 1.1 as

follows.

Corollary 5.1 Let d := (d1, d2, . . . , dm) and d := d1 . . . dm. Then

W1(s,d) = 1
d

∑

�

(
m − 1 + s−�

d
m − 1

)
, (44)

where the sum is taken over all � with

� = �1d1 + · · · + �mdm, 0 ≤ �i ≤ d
di − 1, i = 1, . . . , m.

The binomial coefficient on the right of (44) is reminiscent of some combinatorial
objects related to partitions and compositions. (Note, however, that (s− �)/d is generally
not an integer).
If we set d1 = · · · = dm = 1, then the sum in (44) collapses to a single term, as does the

sum in (3), and we get

W (s,d) = W1(s,d) =
(
m − 1 + s
m − 1

)
.

This is a well-known elementary expression for the number of solutions of (2) for d =
(1, . . . , 1); see, e.g., [2, p. 1328].
While this is not the same as the number of compositions of s into m parts, there is

a connection: The number of compositions of n into exactly m parts, each at least k , is(m−1+n−km
m−1

)
; see [1, p. 63].

2. For the sake of completeness we cite the main result of Rubinstein [19], which we
referred to in the Introduction. While for W1(s,d) the order of the components in the
given vector s = (d1, . . . , dm) is irrelevant, this becomes an issue for the Sylvester waves
Wj(s,d) when j ≥ 2.
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Given an integer j ≥ 2, we now assume that the components in d are sorted in such a
way that j divides the first kj components. We denote

dj := (d1, . . . , dkj , jdkj+1, . . . , jdm),

so that all the components in the vector dj are divisible by j.
We also need the prime radical circulator ψj(s), which for positive integers s is defined

by

ψj(s) :=
∑

0≤ν<j
gcd(ν,j)=1

ρs
j , (45)

where, as before, ρj is a primitive jth root of unity. For prime j we have

ψj(s) =
⎧
⎨

⎩
ϕ(j), s ≡ 0 (mod j),

μ(j), s �≡ 0 (mod j)
(j prime), (46)

where ϕ(j) and μ(j) are Euler’s totient function and the Möbius function, respectively.
There is also an explicit formula for composite j; see [19] and the references therein for
further details.
With these notations, Rubinstein’s identity (19) in [19] can be stated as follows, in a

slightly different form:

Wj(s,d) =
∑

0≤rkj+1≤j−1
...

0≤rm≤j−1

W1(s − rkj+1dkj+1 − · · · − rmdm,dj)

× ψj(s − rkj+1dkj+1 − · · · − rmdm). (47)

We conclude this section with two examples, one of which is general, and the second one
is more specific.

Example 1 If j does not divide any of the components of d, then kj = m, andWj(s,d) = 0
as the sum on the right of (47) is empty. This is consistent with (3) and the statement
following it.

Example 2 Let d = (2, 4, 5). Then k2 = 2, and d2 = (2, 4, 10). By (45) or (46) we have
ψ2(s) = (−1)s. The identity (47) then gives

W2(s,d) =
1∑

r3=0
W1(s − r3d3,d3)ψ2(s − r3d3)

= W1(s, (2, 4, 10)) · (−1)s + W1(s − 5, (2, 4, 10)) · (−1)s−5

= (−1)s
(
W1(s, (2, 4, 10)) − W1(s − 5, (2, 4, 10))

)
.

The two Sylvester waves W1 above can easily be given explicitly by way of (35). The last
line above also illustrates the fact that W2(s,d) is a quasipolynomial; see, e.g., [3] or [4,
p. 47].
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